Sec. 7.3 Graphs of Sine and Cosine

The Sine Wave:

Properties of the Sine Function:

- 1. The domain is the set of all real numbers.
- 2. The range consists of real numbers from -1 to 1, inclusive.
- 3. The sine function is an odd function as the symmetry of the graph with respect to the origin indicates.
- 4. The sine function is periodic, with period 360° 90°
- 5. The x-intercepts are ... -360°, -180°, 0°, 180°, 360°...
- 6. The y intercept is 0.
- 7. The maximum value is 1 and occurs at $x = ... -270^{\circ}$, 90° , 450° ...
- 8. The minimum value is -1 and occurs at $x = ...-90^{\circ}$, 270° , 630° ...

Transforming Graphs:

Ex. Graph $y = \sin x$ and then graph $y = \sin (x - 45^\circ)$, $y = \sin x + 2$ and $y = \sin (x - 45^\circ) + 2$. What do you notice about the graphs? What happens to the x and y intercepts, maximum and minimum values?

The Graph of the Cosine Function:

Properties of the Cosine Function:

- 1. The domain is the set of all real numbers.
- 2. The range is all real numbers from –1 to 1, inclusive.
- 3. The cosine function is an even function, with symmetry with respect to the yaxis.
- 4. The cosine function is periodic with period 360°.
- 5. The x-intercepts are ...-270°, -90°, 90°, 270°, ...
- 6. The y-intercept is 1.
- 7. The maximum value is 1 and occurs at $x = ...-360^{\circ}$, 0, 360°, 720°...
- 8. The minimum value is -1 and occurs at $x = ... -180^{\circ}$, 180° , 540° , 900° ...

Ex. Compare the graphs of $y = \cos x$ and $y = 2 \cos x$ and $y = \cos (3x)$. What happens to the intercepts and the minimums/maximums? How about period, amplitude and

midlines? $y = 2 \cos x \leftarrow Vartical Stretch SF 2 (Amplitude of 2)$ $y = \cos (3x) \leftarrow torizontal Compression SF 1/3 (Period = 360 x <math>\frac{1}{3}$ = 120°)

y=cos 3x Period = 360=120°

Properties of the sine and cosine functions that are apparent from the graph include:

- Domain: All values of θ , since any angle, positive or negative, specifies a point on the unit circle.
- Range: Since values of the sine and cosine are coordinates of points on the unit circle, they lie between -1 and 1. So the range of the sine and cosine are $-1 \le \sin \theta \le 1$ and $-1 \le \cos \theta \le 1$.
- Odd/Even Symmetry: The sine function is odd and the cosine function is even: $\sin(-\theta) = -\sin\theta$ and $\cos(-\theta) = \cos\theta$.
- Period: Both sine and cosine are periodic functions, because the values repeat regularly. The smallest interval over which the function values repeat—here
 360—is called the period. We have

$$\sin(\theta + 360) = \sin \theta$$
 and $\cos(\theta + 360) = \cos \theta$.

The coordinates of the point P on the unit circle in the figure are given by $x = \cos \theta$ and $y = \sin \theta$. The coordinates (x, y) of the point Q are given by $x = r \cos \theta$ and $y = r \sin \theta$.

Ex. Find the coordinates of point A, B, and C if the radius of the circle is 5 and A has an angle of 130 degrees counterclockwise rotation, B has an angle of 70° clockwise rotation, and C is 10° past a 180° counterclockwise rotation.

(-4.9240, -.8682)

(5cos 130°, 5sin 130°) (-3.2139, 3.8302)

(5cos -70°, 5 sin 70°) (1.7101, -4.69 85)

(1.7101, -4.69 PS)**Ex.** The Ferris wheel has a radius of 225 feet. Find your height above the ground as a function of the angle θ measured from the 3 o'clock position. What is your height when θ

= 60°? when θ = 150°? (note: the center of the ferris wheel is also 225 feet above the ground to begin with!).

225 }

y = 226 sin 60° y = 194. 8557 +225 [419. 8557 fr]

3

190°

 $y = 225 \sin 150$ = 112.5 + 225 337.5 + 1

HW: pg 290-291, #3-27 (m/3) and 29, 31, 32, 34, 36